Пдк диоксида азота в воздухе. Предельно допустимые концентрации пыли в воздухе рабочей зоны

Пыль представляет собой мельчайшие частицы твердых веществ, которые способны в течение некоторого времени находиться во взвешенном состоянии.

По воздействию на организм пыль может быть токсичной и нетоксичной. Токсичная относится к промышленным ядам и действует аналогично токсичным газам.

Под производительной пылью понимают нетоксичною пыль. Основными профессиональными заболеваниями при ее действии являются пневмокониозы, хронические бронхиты, заболевания слизистых оболочек дыхательных путей и кожи.

Наиболее тяжелые пневмокониозы вызываются действием двуокиси кремния (SiO 2) - силикоз, угольной пыли - антракоз, асбестовой пыли - асбестоз. Многие пыли растительного и животного происхождения обладают аллергенным действием (пыль трав, зерна, муки, соломы и др.).

На опасность поражения влияют: формы частиц, дисперсность пыли, электрические, физико-химические свойства, растворимость.

Аэрозоли преимущественно фиброгеного действия (АПФД) (пыли) – физический фактор это те же химические вещества, встречающиеся в природе или получаемые химическим синтезом, но для их контроля используется метод весового (гравиметрического) анализа.

Фиброгенным называется такое действие пыли, при котором в легких человека происходит разрастание соединительной ткани, нарушающее нормальное строение и функции органа.

АПФД делятся на:

Высоко и умеренно фиброгенные, с ПДК ≤ 2 мг/м 3

Слабо фиброгенные ПДК ˃ 2 мг/м 3

АПФД идентифицируются как вредные и (или) опасные факторы только на рабочих местах, на которых:

Осуществляется добыча;

Обогащение;

Производство и использование в технологическом процессе пылящих веществ, относящихся к АПФД;

Эксплуатируется оборудование, работа на котором сопровождается выделением АПФД (пыли, содержащие природные и искусственные минеральные волокна, угольная пыль):

ГН 2.2.5.1313-03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны» 2472 наименования, из них 125 АПФД, табл. 4.10.

Таблица 4.10. ПДК пыли в воздухе рабочей зоны



На рабочих местах концентрацию пыли необходимо измерять в зоне дыхания (на высоте 1,5 м от пола при работе стоя и 1,0 м - при работе сидя). оборудование для отбора проб приведено на рис. 4.3.

1)
2)

Рис.4. 3 Оборудование для отбора проб воздуха на АПФД:

1- воздухозаборное устройство, 2 – фильтры.

Воздействие АПФД на организм:

§ затрудняет дыхание, вызывает кашель и чихание;

§ токсичная пыль может привести к отравлению, удушью и др.;

§ ухудшает видимость, приводит к раздражению слизисто оболочки глаз и повышенному слезотечению;

§ вызывает раздражение кожи;

§ при ухудшении видимости повышается риск травмирования.

Расчет пылевой нагрузки. При оценк е условий труда на нестационарных рабочих местах и (или) при непостоянном в течение рабочей недели непосредственном контакте работников с АПФД в целях установления класса (подкласса) условий труда производится расчет ожидаемой пылевой нагрузки за год (ПН 1год), исходя из ожидаемого фактического количества рабочих смен, отработанных в условиях воздействия АПФД:

ПН 1год = К сс ·N·Q ,

где: К cc – фактическая среднесменная концентрация пыли в зоне дыхания работника, мг/м 3 ;

N – число рабочих смен, отработанных в календарном году в условиях воздействия АПФД;

Q – объем легочной вентиляции за смену, м 3 .

Объем легочной вентиляции, которая зависит от уровня энерготрат и, соответственно, категорий работ (согласно СанПиН 2.2.4.548-96 ) составляет:

Полученная величина ПН 1год сравнивается с величиной КПН за год (общее количество рабочих смен в году N год при воздействии АПФД на уровне среднесменной ПДК, соответственно



КПН 1год = ПДК сс × N год ×Q .

При соответствии фактической пылевой нагрузки контрольному уровню (КПН 1год) условия труда относят к допустимому классу условий труда. Кратность превышения контрольных пылевых нагрузок указывает на класс (подкласс) условий труда согласно табл.4.11.

Таблица 4.11. Классы условий труда в зависимости от содержания в воздухе рабочей зоны АПФД, (кратность превышения ПДК и КПН)

Производственное освещение

4.5.1 Светотехнические единицы

Освещенность (E) – поверхностная плотность светового потока, определяется как отношение светового потока dF к площади освещаемой поверхности (dS), единица освещенности - люкс (лк):

Фон – это поверхность, на которой происходит различение объекта. Под объектом различения понимается минимальный элемент рассматриваемого предмета. Фон характеризуется коэффициентом отражения (r) - способностью отражать падающий на него свет, он определяется как отношение отраженного светового потока F отр к падающему F пад:

r = F отр / F пад

Коэффициент отражения меняется от 0,02- черный бархат до 0,95 зеркало. При r < 0,2 фон считается темным, при r = 0,2 – 0,4 – средним; при r > 0,4 светлым.

Контраст объекта с фоном (К) характеризуется соотношением яркостей или коэффициентов отражения рассматриваемого объекта и фона. Контраст между объектом и фоном определяется по формуле:

К = =
где L o и L ф; r о и r ф - соответственно яркости (L) и коэффициенты отражения (r) объекта и фона.

Контраст считается большим при К>0,5, средним - при К= 0,2-0,5 и малым - при К<0,2.

Коэффициент пульсации (k п) – изменение освещенности поверхности вследствие периодического изменения во времени светового потока источника света:

k п = [(E max – E min) / 2E ср ] 100%

где E max , E min и E ср – максимальное, минимальное и среднее значение освещенности за период колебаний; для газоразрядных ламп k п =(25-65)%, для ламп накаливания - k п = 7 %, для галогенных ламп - k п = 1 %.

Показатель ослепленности (P 0) – критерий оценки слепящего действия, создаваемого осветительной установкой:

P 0 = 1000 (V 1 / V 2 - 1)

где V 1 и V 2 – видимость объекта различения соответственно при экранированном и разэкранированном источнике света.

4.5.2 Системы производственного освещения

Освещение производственных помещений делится на естественное и искусственное.

Естественное освещение - боковое (одно- и двухстороннее) - через световые проемы в наружных стенах; верхнее - через световые фонари, проемы в кровле и перекрытиях и комбинированное - сочетание верхнего и бокового освещения.

Искусственное освещение может быть общим (равномерным или локализованным) и комбинированным (общее и местное).

По функциональному назначению искусственное освещение подразделяется на рабочее, аварийное и специальное, которое может быть охранным, дежурным, эвакуационным, эритемным, бактерицидным и др.

Рабочее освещение является обязательным для всех производственных помещений.

Аварийное освещение устраивается для продолжения работы в помещениях, где отключение рабочего освещения может привести к авариям. Минимальная освещенность должна составлять 5% от нормируемой рабочей освещенности, но не менее 2 лк.

Эвакуационное освещение - организуется в местах опасных для прохода людей при числе работающих более 50 человек. Минимальная освещенность на полу должна составлять в помещениях не менее 0,5 лк, на открытых территориях - не менее 0,2 лк.

Охранное освещение устраивают вдоль границ территорий, охраняемых специальным персоналом. Наименьшая освещенность 0,5 лк..

Сигнальное освещение применяется для фиксации границ опасных зон; оно указывает на наличие опасности, либо на безопасный путь эвакуации.

Бактерицидное облучение (освещение) создается для обеззараживания воздуха, питьевой воды, продуктов питания. Наибольшей бактерицидной способностью обладают ультрафиолетовые лучи длиной в (254-257) нм.

Эритемое облучение создается в помещениях, где недостачно солнечного света (северные районы, подземные сооружения). Максимальное эритемное воздействие оказывают электромагнитные лучи с длиной волны 297 нм. Они стимулируют обмен веществ, кровообращение, дыхание и другие функции организма.

Источниками искусственного света служат лампы накаливания, люминесцентные и светодиодные лампы.

4.5.3 Нормирование освещения

Освещенность нормируется СП 52.13330.2011. "Естественное и искусственное освещение"; и СанПиН 2.2.1/2.1.1.1278-03 "Гигиенические требования к естественному, (табл.4.12 и 4.13). Для искусственного освещения нормируемым параметром является минимальная освещенность (E min) на рабочей поверхности в горизонтальной плоскости на расстоянии 0,8 м от пола.

Все работы делятся на VIII разрядов, а I – V делятся на подразряды. E min выбирается в зависимости от точности зрительной работы, коэффициента отражения зрительной поверхности и контраста с фоном.

Измерения освещенности производятся с использованием люксметров, имеющих погрешность, которых не более 10%. Он состоит из гальванометра и фотоэлемента, рис.4.4.

При работе на открытой территории только в дневное время суток условия труда на рабочем месте по показателю освещенности рабочей поверхности признаются допустимыми.

При расположении рабочего места в нескольких рабочих зонах (в помещениях, на участках, на открытой территории) отнесение условий труда к классу (подклассу) условий труда при воздействии световой среды осуществляется с учетом времени пребывания в разных рабочих зонах по формуле (4.1):

Таблица 4.12. Нормируемые показатели естественного, искусственного и совмещенного освещения основных помещений общественного здания, а также сопутствующих им производственых помещенийсогласно СП 52.13330.2011

Помещения Рабочая поверхность Естественное освещение Совмещенное освещение Искусственное освещение
и плоскость КЕО, % КЕО, %
нормиро- вания КЕО и освещен- ности (Г - горизон- тальная, В - верти- кальная) и высота плоскости над полом, м при верх- нем или комби- ниро- ванном осве- щении при боковом осве- щении при верхнем или комби- ниро- ванном осве- щении при боковом освеще- нии Освещенность, лк Пока- затель диском- форта, М, не более Коэф- фици- ент пульса- ции освещен- ности, %, не более
при комбинирован- ном освещении при общем освещении
всего от общего
1.Кабинеты, рабочие комнаты, офисы, представительства Г-0,8 3,0 1,0 1,8 0,6
2.Проектные залы и комнаты конструкторские, чертежные бюро Г-0,8 4,0 1,5 2,4 0,9
3.Помещения для ксерокопирования Г-0,8 - - - - - -
4.Макетные, столярные, ремонтные мастерские Г-0,8 - - 3,0 1,2 15/20
5.Помещения для работы с дисплеями и видеотерминалами, залы ЭВМ Г-0,8 Экран монитора: 3,5 - 1,2 - 2,1 - 0,7 - - -
-
Конференц-залы, залы заседаний Г-0,8 - - - - - -
Кулуары (фойе) Г-0,0 - - - - - - -
Лаборатории Г-0,8 3,5 1,2 2,1 0,7

Рис.4.4. Люксметры: 1- ТКА-ПКМ, 2 – Testo - 540

Таблица 4.13. Отнесение условий труда по классу (подклассу) условий труда при воздействии световой среды

где: УТ – условия труда, выраженные в баллах;

УТ 1 , УТ 2 , … ,УТ n – условия труда в 1-ой, 2-ой, n -ой рабочих зонах соответственно, выраженные в баллах относительно класса (подкласса) условий труда (допустимые условия труда – 0 баллов; вредные условий труда (подкласс 3.1) – 1 балл; вредные условий труда (подкласс 3.2) – 2 балла);

t 1 , t 2 , t n – относительное время пребывания (в долях единицы) в 1-ой,
2-ой, n -ой рабочих зонах соответственно

Производственный шум

Частотный диапазон слухового восприятия человеком звуковых колебаний находится в пределах от 16 до 20000 Гц.

Всяческий нежелательный для человека звук называется шумом.

Шум нарушает прием информации, что влияет на ошибки и травматизм. Он вызывает усталость.

Воздействие шума отражается, прежде всего, на органах слуха. Различают три формы воздействия - утомление слуха, шумовую травму и профессиональную тугоухость, которая ведет к снижению слуха вплоть до его полной потери.

В каждой точке звукового поля давление и скорость распростране­ния изменяется во времени. Разность между мгновенным значением давлением образовавшимся в среде при прохождении звука (Р ср ) и атмосферным давлением (Р атм ) называется звуковым давлением - обозначается буквой Р зв и измеряется в Паскалях (Па) (рис.4.5).

Рис. 4.5. Иллюстрация звукового давления

При распространении звуковой волны происходит перенос энергии. Средний поток энергии отнесенный к поверхности, нормальной к направлению распростра­нения волн, называется интенсивностью звука I (Вт/м 2) в данной точке.

Интенсивность звука связана со звуковым давлением зависимостью

(4.2)

где ρ – плотность среды, кг/м 2 ;

с – скорость звука в этой среде, м/с.

Величины звукового давления и интенсивности звука, с которым приходится иметь дело, находятся в широких пределах. Так, минимальная величина интенсивности звука, воспринимаемая человеком на частоте f = 1000 Гц, равна I о = 10 -12 Вт/м 2 называется порогом слышимости . Максимальная величина называется порогом болевого ощущения и равна I max =10 2 Вт/м 2 . При этом диапазон звукового давления изменяется от Р о =2·10 -5 Па до Р max =2·10 2 Па.

В практике измерений абсолютными значениями интенсивности звука и звукового давления не пользуются, а применяют только логарифмическую (децибеловую) шкалу. Это вызвано следующими причинами:

Во-первых, диапазон изменения звука и звукового давления чрезвычайно широк, нормальное человеческое ухо не способно воспринимать незначительные изменения звукового давления.

Во-вторых, реакция уха человека на различную громкость звука имеет логарифмический характер. Поэтому Бэл ввел показатель уровень интенсивности (уровень звукового давления), который определяется по формуле

(4.3)

где Iо - интенсивность звука на пороге слышимости (10 -12 Вт/м 2).

Если подставить в формулу (2) вместо I значение интенсивности на пороге болевого ощущения (I max =10 2 Вт/м 2), то получим весь диапазон слухового восприятия (L I max , дБ).

дБ (4.4)

Поскольку интенсивность звука пропорциональна квадрату звукового давления, то:

Производственный шум характеризуется спектром , состоящим из звуковых волн разных частот.

При исследовании шумов слышимый диапазон 16 Гц - 20 кГц разбивают на полосы частот (спектр шума ) .

Полоса частот, верхняя граница которой превышает нижнюю в два раза , т.е. f 2 = 2 f 1 , называется октавой.

Для более детального исследования шумов иногда используются третьоктавные полосы частот, для которых f 2 = 2 1/3 · f 1 = 1,26 f 1

Октавная и третьоктавная полоса обычно задается среднегеометрической частотой: f ср = .

Существует стандартный ряд среднегеометрических частот октавных полос, в которых рассматриваются спектры шумов (f сг м in = 31,5 Гц, f сг мах = 8000 Гц), табл. 4.14.

По частотной характеристике различают шумы: Низкочастотные f сг < 250 Гц Среднечастотые 250< f сг ≥ 500Гц Высокочастотные 500< f сг ≥ 8000Гц

По характеру спектра шумы делятся на тональные (в спектре выражены отдельные тона) и широкополосные (с непрерывным спектром более одной октавы).

По временной характеристике - постоянные (уровень звука за рабочий день изменяется не более чем на 5 дБА) и непостоянные (уровень звука за рабочий день изменяется менее чем на 5 дБА). Непостоянные, в свою очередь, делятся на колеблющиеся во времени, импульсные и прерывистые.

Человеческое ухо неодинаково реагирует на звуки с разными частотами. Чувствительность уха (громкость) заметно увеличивается при частотах от 20 до 1000 Гц. Наибольшей чувствительностью человеческое ухо обладает в диапазоне частот от 1000 Гц до 4000 Гц рис. 4.6.

Рисунок 4.6. График кривых равной громкости: 1- порог слышимости; 2 – порог болевых ощущений; 3 – область речевых передач; 4- область музыкальных передач.

Чтобы оценить уровень громкости шума на разны частотах, используется стандартная частотная характеристика А , приближающаяся к чувствительности человеческого уха. При этом используются поправки по шкале А (табл.4.15).

Таблица 4.15. Стандартные значения поправок для частотной коррекции по шкале А.

Частота 31,5
Коррекция ∆L А, дБА 26,3 16,1 8,6 3,2 -1,2 -1,0 1,1

Корректированный по шкале А уровень звукового давления, дБА в i –той октавной полосе вычисляется как:

∆L А i = L i - ∆L А i (4)

Суммарный уровень шума (уровень громкости или уровень звука) со сложным спектральным составом определяется по уровню звук во всех октавных полосах по формуле:

L Σ =10 lg (10) 0,1Ll + 10 0,1L2 + …+ 10 0,1Ln), дБА (4.6)

L Σ = L 1 + Σ∆ L i (4.7)

Для постоянных шумов устанавливаются ПДУ в октавных полосах со среднегеометрическими значениями частот: 31,5, 63, 125, 500, 1000, 2000, 4000, 8000 Гц. Для оценки уровня шума допускается использовать уровень звука (дБА).

При воздействии на работника в течение рабочего дня (смены) шумов с разными временными (постоянный, непостоянный шум) и спектральными (тональный шум) характеристиками измеряют или рассчитывают эквивалентный уровень звука. Для получения сопоставимых данных измеренные или рассчитанные эквивалентные уровни звука импульсного и тонального шумов увеличиваются на 5 дБА, после чего полученный результат можно сравнивать с ПДУ для шума без внесения в него понижающей поправки.

4.6.1 Расчет эквивалентного уровня шума

Эквивалентный уровень шума рассчитывают по формулам 4.8 или 4.9.

L cp = 10 lg (10 0.1 L 1 + 10 0.1 L 2 +10 0.1 L 3 +...+10 0.1 L n) - 10 lg n, дБА (4.8)

где: L 1 , L 2 , l 3 , ...L n - измеренные уровни, дБА,

n – число измерений.

L cp =L сум - 10 lg n (4.9)

Суммирование измеренных уровней по формуле 7 производят попарно последовательно следующим образом. По разности двух уровней L 1 и L 2 по табл. 4.16 определяют добавку ΔL, которую прибавляют к большему уровню L 1 , в результате чего получают уровень l 1, 2 = L 1 + ΔL. Уровень L 1,2 суммируется таким же образом с уровнем L 3 и получают уровень L 1,2,3 и т.д. Окончательный результат L сум округляют до целого числа децибел.

Таблица 4.16

При равных слагаемых уровнях, т.е. при L 1 = L 2 = L 3 = ...=L n =L, L сум можно определять по формуле 4.10.

L сум =L 1 + 10 lg n , (4.10)

Таблица 4.17. Значения 10 lg n в зависимости от n.

При оценке условий труда по шумовому фактору оценивают время воздействия фактора и определяют эквиалентное значение по таблице 4.18.

Эквивалентный уровень звукового давления – это уровень звукового давления, усредненный по времени (размерность – дБА)

Таблица 4.18. Корректировка уровня шума в зависимости от времени воздействия

Время в часах 0,5 15 мин 5 мин
в %
Поправка в дБ о -0,6 -1,2 -2 -3 -4,2 -6 -9 -12 -15 -20

4.6.2 Измерение шума на рабочих местах

При проведении измерений охватывают все характерные и повторяющиеся изо дня в день шумовые ситуации (важно выявить все значительные изменения шума на рабочем месте, например на 5 дБ (дБА) и более).

Продолжительность измерений в пределах каждого опорного временного интервала:

§ для постоянного шума не менее 15 с ;

§ для непостоянного, в том числе прерывистого, шума она должна быть равна продолжительности по меньшей мере одного повторяющегося рабочего цикла или кратна нескольким рабочим циклам;

§ для непостоянного шума , - 30 мин (три цикла измерений по 10 мин);

§ для импульсного шума - не менее времени прохождения 10 импульсов (рекомендуется 15 - 30 с ).

Для измерения используют шумомеры, рис.4.7.

Таблица 4.19. Предельно допустимые уровни звукового давления, звука и эквивалентного уровня звука на рабочих местах при специальной оценке условий труда

Производственная вибрация

Вибрация - колебательные движения упругих тел, конструкций, сооружений около положения равновесия. Воздействие вибраций на человека классифицируется:

По способу передачи вибрации на человека;

По направлению действия вибрации;

По времени действия.

По способу передачи на человека различают общую и локальную вибрацию (рис. 4.8).


1

2

Рис 4.8. Направление координатных осей при действии общей (1): а) положение стоя; б) положение сидя и локальной вибрации (2): при охвате: а) торцевых; б) сферических поверхностей.

Общая вибрация по источнику ее возникновения подразделяется на

скоростью перемещения - экскаваторы, краны, бетоноукладчики, напольный производственный транспорт;

а) на постоянных рабочих местах производственных помещений;

б) на рабочих местах на складах, в столовых, бытовых, дежурных и других помещениях, где нет машин, генерирующих вибрацию;

в) на рабочих местах в помещениях заводоуправления, конструкторских бюро, лабораторий, учебных пунктов, здравпунктах и других помещениях для работников умственного труда.

Локальная вибрация передается через руки человека. К ней можно отнести воздействие на ноги сидящего человека и на предплечья, контактирующие с вибрирующими поверхностями.

По направлению действия вибрацию подразделяют в соответствии с направлением ортогональной системы координат.

По временной характеристике различается:

постоянная вибрация , для которой контролируемый параметр за время действия изменяется не более чем в 2 раза (на 6 дБ);

непостоянная вибрация , для которой эти па­раметры за время наблюдения изменяются более чем в 2 раза (на 6 дБ).

При действии вибрации на человека оцениваются виброскорость(виброускорение), диапазон частот и время воздействия вибрации.

Частотный диапазон воспринимаемых вибраций от1 до 1000 Гц. Колебания с частотой ниже 20 Гц воспринимаются организмом только как вибрация, а с частотой выше 20 Гц – одновременно как вибрация и шум.

Общая вибрация вызывает изменения в сердечно-сосудистой ицентральной нервной системах, появление болей в отдельных органах. Локальные вибрации влияют на центральную нервную систему, повышая кровяное давление, вызывают сужение капилляров в кончиках пальцев, приводят к потере их чувствительности (виброболезни), рис. 4.9. Вибрационная болезнь от локальной вибрации проявляется приступами побеления пальцев, нарушением чувствительности, похолоданием кистей. Уменьшается выносливость мышц к физической нагрузке. При прогрессировании заболевания возникает нарушение чувствительности в виде «высоких перчаток» (от локтя), возникает отечность рук, тукоподвижность в суставах кистей по утрам и пр.

Рис. 4.9. Признаки локальной вибрационной болезни

Под воздействием вибрации ухудшается зрительное восприятие, особенно при частотах (25-40) и (60 - 90) Гц. Вертикальная вибрация особенно неблагоприятна для работающих в сидячем положении, горизонтальная - для работающих стоя. Действие вибрации на человека становится опасным, когда частота колебаний рабочего места приближается к частоте собственных колебаний органов тела человека: (4-6) Гц - колебания головы относительно тела в положении стоя, (20-30) Гц - в положении сидя; 4-8 Гц - брюшной полости; 6-9 Гц большинства внутренних органов; 0,7 Гц - "качка", вызывают морскую бо­лезнь.

4.7.1. Нормирование вибрации

Нормируемыми и контролируемыми параметрами вибрации, согласно СН 2.2.4/2.1.8.566-96 используются средние квадратичные значения виброускорения (а) или виброскорости (V), а также их логарифмические уровни в децибелах (дБ).

Логарифм уровня виброскорости (Lv, дБ) и виброускорения (L a , дБ) определяют по формулам:

, (1)

, (2)

где 5×10 -8 и 1×10 -6 - опорные значения виброскорости и ускорения.

Нормируемый диапазон частот устанавливается:

Для локальной вибрации в октавных полосах со среднегеометриче­скими частотами (f 2 /f 1 =2) - 8, 16, 31.5, 63, 125, 250, 500, 1000 Гц;

Для общей вибрации в октавных и 1/3 октавных полос со среднегеометрическими частотами (f 2 /f 1 =V2) - 0.8, 1, 1.25, 1.6, 2.0, 2.5, 3.1, 4.0, 5.0,6.3,8.0, 10.0, 12.5, 16.0, 20,25, 31.5,40, 50, 63, 80 Гц.

В табл. 4.20 - 4.24 приведены допустимые значения для вибраций различных категорий при длительности рабочей смены 8 часов.

Таблица 4.20. Предельно допустимые уровни локальной вибрации

Среднегеометрические частоты октавных полос, Гц Предельно допустимые уровни по осям X л, Y л, Z л
виброскорости виброускорения
м/с · 10 -2 дБ м/с 2 дБ
1,4
1,4 1,4
31,5 1,4 2,7
1,4 5,4
1,4 10,7
1,4 21,3
1,4 42,5
1,4 85,0
Корректированный, эквивалентный корректирован ный уровень 2,0 2,0

Таблица 4.21. Предельно допустимые значения вибрации рабочих мест

Гц Предельно допустимые значения по осям Х, У, Z
для виброускорения для виброскорости
м/с 2 дБ м/с·10 2 дБ
в 1/3 в октаве в 1/3 в октаве в 1/3 октаве в 1/3 в октаве
Z Х, У Z Х, У Z Х, У Z Х, У Z Х, У Z Х, У Z Х, У Z Х, У
0,8 0,70 0,22 4,50
1,0 0,63 0,22 1,10 0,40 10,00 3,5 20,0 6,30
1,25 0,56 0,22 7,10 2,80
1,6 0,50 0,22 5,00 2,20
2,0 0,45 0,22 0,79 0,45 3,50 1,78 7,10 3,50
2,5 0,40 0,28 2,50 1,78
3,15 0,35 0,35 1,79 1,78
4,0 0,32 0,45 0,56 0,79 1,30 1,78 2,50 3,20
5,0 0,32 0,56 1,00 1,78
6,3 0,32 0,70 0,79 1,78
8,0 0,32 0,89 0,63 1,60 0,63 1,78 1,30 3,20
10,0 0,40 1,10 0,63 1,78
12,5 0,50 1,40

Вопрос о предельно допустимом содержании пыли в воздухе рабочих помещений имеет большое значение. Наиболее правильным методом определения допустимых концентраций запыленности воздуха можно считать метод, основанный на сопоставлении длительных динамических наблюдений над пылевой патологией различных профессиональных групп и запыленностью внешней среды, в которой эти группы работают. Тот уровень запыленности, при котором специфическая пылевая патология не отмечается, мог бы рассматриваться как предельно допустимый. На этом принципе основана рекомендуемая различными исследователями максимально допустимая концентрация в 1-2 мг/м3 для всех видов пыли со значительным содержанием кварца (пыль кварца, песка, песчаника, гранита и т. п.) и пыли асбеста.

В отношении остальных видов нетоксической пыли предельно допустимое содержание ее в рабочей зоне может быть с гигиенической точки зрения повышено в зависимости от характеристики пыли - ее химического состава, формы, консистенции и других свойств.

Наше законодательство предусматривает для , содержащей кварц свыше 10%, предельно допустимую концентрацию в 2 мг/м3, для остальных видов нетоксической пыли - до 10 мг/м3. В соответствии с указаниями, приведенными в Н 101-54, предельно допустимые концентрации содержания пыли в воздухе рабочей зоны устанавливаются по отраслям промышленности применительно к отдельным производственным процессам по согласованию с Главной государственной санитарной инспекцией Министерства здравоохранения.

Основными мероприятиями , предупреждающими поступление в воздух производственных помещений пыли, является рационализация технологического процесса и оборудования, исключающая возможность пылеобразования, механизация и автоматизация производства, осуществление вентиляции.

Большое значение имеет, в частности, пневматический транспорт , широко применяемый в приготовительных цехах хлопчатобумажных фабрик, на цементном, табачном, деревообделочном и некоторых других производствах. На рисунке в качестве примера приведена схема размола и перемещения сыпучих веществ с применением вакуум-пневматики. Вентиляционные устройства на мельничных агрегатах оказываются значительно менее эффективными.
Ряд готовых продуктов может выпускаться не в порошках , а в виде пасты (красители) или таблеток (белая сажа), чем полностью или в значительной степени устраняется пылевыделение.

В литейных цехах значительный гигиенический эффект обеспечивается при замене пескоструйной очистки литья гидроочисткой (струей воды под добавлением до 100 атм. пескогидроочисткой (струей влажного песка) или при замене песка дробью. В этих же цехах снижение запыленности достигается путем применения пневмотранспорта горелой земли, механизации и автоматизации процессов формовки и выбивки песчаных форм, обнаждачивания (обдирка) литья.

На рисунке показано устройство гидрообеспыливания при транспорте пылящих материалов. Вода распыляется из форсунок. В горнорудной и угольной промышленности применение воды с целью снижения запыленности воздуха является, по действующим правилам, обязательным при всех тех работах, при которых происходит значительное пылеобразование. К таким работам относятся бурение шпуров пневматическими молотками, очистные работы с помощью горных комбайнов, врубовых породопогрузочных машин и т. п. Однако применением мокрых способов обработки с водой обычно не удается достигнуть необходимой эффективности обеспыливания. Особенно это относится к взвешенным в воздухе наиболее вредным мелким пылинкам размером до 3-5 u.

Недостаточная эффективность обеспыливания при влажных способах работы зависит в первую очередь от плохой смачиваемости водой пыли, в особенности мелкой. Для усиления эффективности обеспыливания в этих, случаях в горнорудной и угольной промышленности к воде добавляют небольшие количества (0,1-0,25%) веществ, увеличивающих смачиваемость. Эти вещества-смачиватели понижают поверхностное натяжение воды на границе с воздухом. Кроме того, смачиватели обладают способностью в той или иной степени адсорбироваться из водного раствора на твердых поверхностях.

Повышение пылеулавливающей способности воды под действием малых добавок смачивателей связано, как указывает акад. П. А. Ребиндер, именно с этими двумя их свойствами. В качестве смачивателей предложены различные органические продукты - мылонафт, контакт Петрова, сульфанол, ДБ, ОП-7, ОП-10, сульфитно-спиртовая барда (смачиватель с. с. б.) и др. Мылонафт является побочным продуктом переработки нефти; состоит из натриевых солей нафтеновых кислот, минерального масла и воды. Контакт Петрова получается при очистке соляровых и веретенных масел серной кислотой.

Смачивающее действие оказывают содержащиеся в контакте в количестве до 50% сульфокислоты - сульфанол-смесь натриевых солей алкилбензолсульфонатов. ДБ -смесь полиэтиленгликольмоноалкилфениловых эфиров; продукт обработки бутилфенолов окисью этилена. ОП-7 и ОП-10 -по химическому составу близки к смачивателю ДБ; продукты обработки высокомолекулярных алкилфенолов окисью этилена. В отличие от ДБ смачиватель ОП-7 обладает неприятным запахом гнили. ОП-10 обладает этим запахом в меньшей степени. Сульфитно-спиртовая барда (смачиватель с. с. б.) - отходы в производстве целлюлозы.

Состав смачивающих добавок к воде нужно подбирать в каждом отдельном случае с учетом минералогического состава породы, жесткости воды, других местных условий и проверять как в лаборатории, так и па производстве. В частности, мылонафт и другие мыла в жесткой иоде теряют эффективность под влиянием выпадения осадков кальциевых и магниевых мыл. При правильном подборе смачивателей их добавление к воде дает значительный эффект, в особенности в отношении снижения количества мелких пылинок. В горнорудной промышленности лучшие результаты получены со смачивателем ДБ. Системы общей вытяжной вентиляции в борьбе с запыленностью малоэффективны.

Учитывая процесс осаждения пыли на пол, стены и оборудование, необходимо проводить регулярную уборку рабочих помещений путем обметания и обтирания осевшей пыли влажным способом, а в некоторых случаях путем пневматического всасывания. Это имеет тем большее значение, чем меньше пылевые частицы и чем легче они могут вновь подниматься в воздух возникающими при уборке в помещении токами. Важно удалять пыль, осевшую на приборах центрального отопления- радиаторах и трубах: при паровом или водяном отоплении среднего или высокого давления пыль, осевшая на приборы, может пригорать и стать источником загрязнения воздуха.

Многочисленные исследования показывают, что запыленность воздуха рабочих помещений колеблется в широких пределах в зависимости от характера производства, технологического процесса, состояния обору­дования, характера производственных операций, состояния технических мер борьбы с пылью и др.

В зависимости от указанных условий в воздухе рабочих помещений можно обнаружить количество пыли от 1 мг/м 3 и меньше до десятков и сотен миллиграммов в 1м 3 воздуха и от 200 до десятков тысяч микро­скопических пылевых частиц в 1 см 3 воздуха, а ультрамикроскопических частиц – до нескольких сотен тысяч. Следует, однако, отметить, что, несмотря на интенсификацию производственных процессов и в связи с этим, увеличение пылеобразования, запыленность воздуха рабочих по­мещений в настоящее время значительно ниже, чем была 10 – 20 лет назад. Объясняется это рационализацией технологических процессов и оборудования, а также совершенствованием и широким применениемспециальных технических мер по борьбе с пылью.

Исходя из установленного положения о наибольшей агрессивности кварцевой (SiO 2) пыли, в России установлены следующие предельно допустимые концентрации пыли в воздухе рабочих помещений в весо­выхединицах: при содержании в пыли более 70% свободной двуокиси кремния – 1 мг/м 3 , при содержании ее от 10 до 70%-2 мг/м 3 , для асбестовой пыли и смешанной, содержащей более 10% асбеста,- 2 мг/м 3 , для пыли стеклянного и минерального волокна – 4 мг/м 3 . Все­го нормировано более 30 видов нетоксичной пыли, причем для пыли, содержащей свободную двуокись кремния в количестве меньше 10%, установлены предельно допустимые концентрации в пределах 2-6 мг/м 3 , а для пыли, не содержащей свободной двуокиси кремния, например угольной и др., установлена предельно допустимая концентрация 10 мг/м 3 . Предельно допустимые концентрации пыли, установленные в России, значительно ниже, чем в других странах, в частности в США; к тому же там они являются только рекомендациями, а не законода­тельными нормативами. [«Санитарные нормы проектирования промышленных предприятий»,СН-245-71.Ю Гигиена труда. 145]

1.4. Перемещение пыли в организме

Не вся пыль, попадающая в дыхательные пути, достигает легких: часть ее задерживается в верхних дыхательных путях, в первую очередь в полости носа. Волоски слизистой оболочки носа, извилистые ходы, лип­кая слизь, покрывающая оболочку, мерцательный эпителий слизистой носа являются отличными механизмами, задерживающими пылевые частицы. Большое значение в задержании пыли в полости носа имеют изменения направления и скорости движения воздушной струи по воздухоносным путям. Такого же рода механизмы, задерживающие пыль, имеются в средних отделах воздушных путей: изменение сечения, за­держка в голосовой щели, бифуркация и перистальтика бронхов, фаго­цитоз на поверхности слизистой оболочки бронхов. Количество задер­жанной пыли в верхних дыхательных путях зависит от физико-химиче­ских свойств пыли, размеров пылевых частиц, состояния дыхательных путей и др.

Значительная часть задержанной пыли выделяется обратно при чихании и кашле. По данным разных авторов, количество выделяемой пыли колеблется от 10% до 70%. В среднем принято считать, что" около 50% пыли достигает легких и там задерживается.

Вне зависимости от физико-химических свойств все виды пылевых частиц вначале оказывают механическое действие на легочную ткань, которая реагирует на них как на инородное тело пролиферативной кле­точной реакцией. В легких происходит процесс фагоцитоза пылевых частиц, в первую очередь клетками легочного эпителия. Фагоцитоз является защитной функцией организма и способствует очищению лег­ких от пыли. Клетки, поглотившие пылевые частицы, так называемые пылевые клетки, стремятся удалить пыль из легких различными путя­ми. Один из путей – удаление пыли вместе с мокротой, другой – уда­ление пыли по лимфатическим путям легкого в бронхиальные железы и по направлению к плевре, где, скапливаясь, пыль вызывает пролиферативную реакцию. Активность фагоцитоза различных видов пыли неодинакова.

Хорошо фагоцитирующаяся пыль, как, например, угольная, сравнительно легко удаляется из легких, в то время как кварцевая пыль, несмотря на высокую активность фагоцитоза, вследствие быстрой гибели фагоцитов удаляется медленно и накапливается в легких. Пыль, транспортируемая пылевыми клетками по лимфатическим путям, может задерживаться в местах бифуркации и изгибов лимфатических сосудов, закупоривать их, вызывать лимфостаз, способствующий в дальнейшем развитию соединительной ткани.

Часть пылевых клеток под влиянием токсического действия пыли (кварца) разрушается, пылевые частицы в этом случае задерживаются в альвеолах, внедряются в ткань межальвеолярных перегородок и вызы­вают пролиферативную клеточную реакцию.

В дальнейшем в зависимости от агрессивности пыли процессы мо­гут протекать в двух направлениях: развитие специфических процес­сов – образование патологической соединительной ткани, т. е. фиброза легких и развитие неспецифических патологических процессов, например воспаление легких, туберкулез легких, рак легких и др.

Воздух в рабочей зоне строго контролируется гигиеническими нормами, вошедшими в соответствующие ГОСТы, которые обязательны для выполнения. Существует таблица с показателями ПДК и рекомендации по мероприятиям для контроля. Для более полного представления о важности этой работы, следует знать, как влияют вредные вещества на здоровье человека.

Что необходимо знать

Законодательно работодатель обязан обеспечить работникам безопасные условия труда (ст.212 ТК РФ). Важным показателем является ПДК вредных веществ в воздухе рабочей зоны .

С его помощью работодатель имеет возможность минимизировать пагубное воздействие токсичных веществ на здоровье сотрудников.

Уровень влияния опасных элементов определяется их концентрацией в воздухе, который окружает людей на рабочих местах. Чтобы исключить негативное воздействие, на большинство опасных элементов и веществ установлены ПДК.

ПДК вредных веществ в воздухе рабочей зоны - это такое содержание ядовитых веществ, которое на протяжении восьмичасового рабочего дня (исключая выходные), не оказывает на людей и их будущих потомков пагубного воздействия.

Нормативные акты отражают ПДК в мг/м3. Рабочая зона - это пространство, равное 2 м. от уровня пола.

Разновидности вредных веществ

Существует около 1200 нормируемых веществ, способных нанести урон здоровью человека. Они разделены на классы по уровню опасности:

  1. Чрезвычайно опасные - менее 0,1 мг/м3 (например, свинец и ртуть).
  2. Высоко опасные - 0,1-1,0 мг/м3 (серная кислота, хлор).
  3. Умеренно опасные - 1,0-10,0 мг/м3 (метиловый спирт).
  4. Малоопасные - более 10,0 мг/м3 (ацетон, аммиак).

По принципу воздействия вещества подразделяют на:

  • наркотические (ацетон);
  • удушающие (углерода оксид);
  • раздражающие (хлор, аммиак);
  • соматические (свинец, мышьяк);
  • аллергены (альдегиды);
  • общетоксические (ртуть);
  • мутагенные (формальдегид, свинец, марганец).

ВАЖНО! Деление на классы опасности играет большую роль. Чем выше класс, тем меньшее количество вещества окажет пагубное воздействие на здоровье человека . Поэтому к данной проблеме нужно подходить со всей серьезностью, ведь на кону здоровье и даже жизнь людей.

Как измеряют концентрацию вредных веществ

На производствах с вредными условиями работодатель обязан организовать мероприятия по контролю над чистотой воздуха. Эти задачи выполняют сотрудники отделов охраны труда.

Если на предприятии при производстве присутствуют вещества 1 класса опасности, то наблюдение осуществляется непрерывно. Для этого разработаны специальные самопишущие приборы. При превышении ПДК они подают звуковой сигнал.

Но такие приборы не всегда возможно применить. В таких случаях производят отбор проб воздуха на расстоянии 0,5 м от лица работника (зона дыхания). При производстве с повышенной опасностью пробы берут не менее 5 раз за смену.

Когда в воздухе находятся несколько однонаправленных веществ, то концентрация будет равна 1. Это такие вещества:

  • различные спирты;
  • фторид водорода и фтористоводородные кислоты;
  • соляная кислота и формальдегид;
  • серный и сернистый ангидрид;
  • различные формы ароматических углеводородов;
  • сероуглерод и бромистый метил.

Если в воздухе несколько опасных веществ различного направления, то при расчете объема воздуха для вентиляции учитывают опасное вещество, для которого требуется наибольшее количество воздуха.

  • условия, при которых появляется опасное вещество;
  • токсичность и уровень опасного воздействия при однократном контакте с веществом;
  • агрегатное состояние;
  • физические характеристики;
  • химическое строение.

Смотрите видео: Атмосфера, ее состав и основные загрязняющие вещества

ПДК вредных веществ в воздухе сведены в таблицу

№№ п/п Вредное вещество Предельное содержание в рабочей зоне мг/м3
1 ПДК диоксид азота 5,0
2 Диоксид углерода ПДК в воздухе рабочей зоны 9000,0
3 Диоксид серы ПДК в воздухе рабочей зоны 10,0
4 Углеводороды нефти ПДК в воздухе рабочей зоны 300,0
5 ПДК паров нефти в воздухе рабочей зоны 10,0
6 ПДК оксида углерода в воздухе рабочей зоны 20,0
7 ПДК аммиак 20,0
8 ПДК фенол 5,0
9 ПДК бензол 5,0
10 ПДК хлор 1,0
11 ПДК этанол 1000,0
12 Нетоксичная пыль 6,0
13 ПДК оксиды азота в пересчете на NO2 5,0
14 ПДК азотная кислота HNO3 2,0
15 ПДК бензин (растворитель, топливный) 100,0
16 ПДК борная кислота 10,0
17 ПДК бутан 300,0
18 ПДК гексан 300,0
19 ПДК железо 10,0
20 ПДК железо триоксид 6,0
21 ПДК зола C10H14 4,0
22 ПДК йод 1,0
23 ПДК калий хлорид 5,0
24 ПДК озон 0,1
25 ПДК ртуть 0,01/0,005

Нравится эта статья? Тогда читайте другие материалы нашего сайта:
ПДК вредных веществ в почве: Всё об этом —
ПДК вредных веществ в воде рыбохозяйственного назначения —
ПДК - это в экологии… (Доклад и таблицы) —

Влияние опасных веществ в воздухе рабочей зоны на здоровье человека

Вредное вещество - это элемент или соединение, вызывающее профессиональные заболевания или приводящее к производственным травмам в результате нарушения правил безопасности.

Также могут быть вызваны нарушения здоровья, проявляющиеся в процессе работы и в отдаленное время жизни живущего и последующих поколений.

Оптимальный состав воздуха для человека (в % по объему):

  • азот - 78,08;
  • кислород - 20,95;
  • инертные газы - 0,93;
  • углекислый газ - 0,03;
  • прочие газы - 0,01.

Вредные вещества, попадая в воздух, меняют его состав, он будет отличаться от атмосферного воздуха.

Во время различных технологических процессов в воздух выделяются некоторые твердые и жидкие фракции, образуя аэрозоли. Проникают вредные вещества в организм через дыхательные пути, а также через кожу или с пищей, если работник кушает на рабочем месте.

При вдыхании пыли она оседает на легких, вызывая заболевания пневмокониозы . Наиболее распространен силикоз, развивающийся при постоянном вдыхании оксида кремния SiO2.

Рассмотреть влияние вредных веществ можно на примере оксида углерода.

Важный показатель чистоты воздуха - углерод оксид пдк рабочей зоны составляет 20,0 мг/м3. Оксид углерода CO - это газ без запаха и цвета. Он оказывает пагубное воздействие на здоровье людей, так как значительно снижает способность гемоглобина переносить и доставлять кислород к жизненно важным системам организма.

Газ образуется при сгорании угля, бумаги, древесины, бензина, масла в условиях недостатка кислорода или воздуха. Его еще называют угарным газом.

Естественным путем в природе образуется 90% от всего количества. 10% приходится на искусственное происхождение:

  • от выхлопных газов;
  • установок каталитического крекинга нефти;
  • литейных производств;
  • печей по обжигу извести;
  • от дистилляции угля и древесины;
  • при производстве синтетического метанола;
  • при производстве карбида и формальдегида;
  • при работе заводов по переработке отходов и другие.

Процессы, во время которых идет неполное сгорание органики, становятся источником угарного газа. Поэтому так строго контролируется оксид углерода пдк в воздухе рабочей зоны.

Оксид углерода стал самой распространенной причиной смертельных отравлений. Огромное количество работников ежедневно подвергаются этой опасности на станциях техобслуживания, в гаражах, в автомобильной промышленности.

В зоне серьезного риска рабочие коксовых и доменных печей, шахтеры, пекари, повара, пожарники и многие другие.

Симптомы отравления проявляются в виде тошноты, головной боли и головокружения в течении 15 минут. Если воздействие угарного газа продолжается от 10 до 40 минут, наступает удушье и смерть.

Соблюдая нормы безопасности и в воздухе рабочей зоны, можно значительно снизить пагубное воздействие опасных элементов на здоровье людей.