Решение рациональных уравнений. Алгоритм решения рациональных уравнений

Наименьший общий знаменатель используется для упрощения данного уравнения. Этот метод применяется в том случае, когда вы не можете записать данное уравнение с одним рациональным выражением на каждой стороне уравнения (и воспользоваться методом умножения крест-накрест). Этот метод используется, когда вам дано рациональное уравнение с 3 или более дробями (в случае двух дробей лучше применить умножение крест-накрест).

  • Найдите наименьший общий знаменатель дробей (или наименьшее общее кратное). НОЗ – это наименьшее число, которое делится нацело на каждый знаменатель.

    • Иногда НОЗ – очевидное число. Например, если дано уравнение: х/3 + 1/2 = (3x +1)/6, то очевидно, что наименьшим общим кратным для чисел 3, 2 и 6 будет 6.
    • Если НОЗ не очевиден, выпишите кратные самого большого знаменателя и найдите среди них такой, который будет кратным и для других знаменателей. Зачастую НОЗ можно найти, просто перемножив два знаменателя. Например, если дано уравнение x/8 + 2/6 = (x - 3)/9, то НОЗ = 8*9 = 72.
    • Если один или несколько знаменателей содержат переменную, то процесс несколько усложняется (но не становится невозможным). В этом случае НОЗ представляет собой выражение (содержащее переменную), которое делится на каждый знаменатель. Например, в уравнении 5/(х-1) = 1/х + 2/(3x) НОЗ = 3x(х-1), потому что это выражение делится на каждый знаменатель: 3x(х-1)/(х-1) = 3x; 3x(х-1)/3х = (х-1); 3x(х-1)/х = 3(х-1).
  • Умножьте и числитель, и знаменатель каждой дроби на число, равное результату деления НОЗ на соответствующий знаменатель каждой дроби. Так как вы умножаете и числитель, и знаменатель на одно и тоже число, то фактически вы умножаете дробь на 1 (например, 2/2 = 1 или 3/3 = 1).

    • Таким образом, в нашем примере умножьте х/3 на 2/2, чтобы получить 2x/6, и 1/2 умножьте на 3/3, чтобы получить 3/6 (дробь 3x +1/6 умножать не надо, так как ее знаменатель равен 6).
    • Действуйте аналогично в случае, когда переменная находится в знаменателе. В нашем втором примере НОЗ = 3x(x-1), поэтому 5/(x-1) умножьте на (3x)/(3x) и получите 5(3x)/(3x)(x-1); 1/x умножьте на 3(x-1)/3(x-1) и получите 3(x-1)/3x(x-1); 2/(3x) умножьте на (x-1)/(x-1) и получите 2(x-1)/3x(x-1).
  • Найдите х. Теперь, когда вы привели дроби к общему знаменателю, вы можете избавиться от знаменателя. Для этого умножьте каждую сторону уравнения на общий знаменатель. Затем решите полученное уравнение, то есть найдите «х». Для этого обособьте переменную на одной из сторон уравнения.

    • В нашем примере: 2x/6 + 3/6 = (3x +1)/6. Вы можете сложить 2 дроби с одинаковым знаменателем, поэтому запишите уравнение как: (2x+3)/6=(3x+1)/6. Умножьте обе части уравнения на 6 и избавьтесь от знаменателей: 2x+3 = 3x +1. Решите и получите х = 2.
    • В нашем втором примере (с переменной в знаменателе) уравнение имеет вид (после приведения к общему знаменателю): 5(3x)/(3x)(x-1) = 3(x-1)/3x(x-1) + 2(x-1)/3x(x-1). Умножив обе стороны уравнения на НОЗ, вы избавитесь от знаменателя и получите: 5(3x) = 3(х-1) + 2(х-1), или 15x = 3x - 3 + 2x -2, или 15х = х - 5. Решите и получите: х = -5/14.
  • "Решение дробных рациональных уравнений"

    Цели урока:

    Обучающая:

      формирование понятия дробных рационального уравнения; рассмотреть различные способы решения дробных рациональных уравнений; рассмотреть алгоритм решения дробных рациональных уравнений, включающий условие равенства дроби нулю; обучить решению дробных рациональных уравнений по алгоритму; проверка уровня усвоения темы путем проведения тестовой работы.

    Развивающая:

      развитие умения правильно оперировать полученными знаниями, логически мыслить; развитие интеллектуальных умений и мыслительных операций - анализ, синтез, сравнение и обобщение; развитие инициативы, умения принимать решения, не останавливаться на достигнутом; развитие критического мышления; развитие навыков исследовательской работы.

    Воспитывающая:

      воспитание познавательного интереса к предмету; воспитание самостоятельности при решении учебных задач; воспитание воли и упорства для достижения конечных результатов.

    Тип урока : урок – объяснение нового материала.

    Ход урока

    1. Организационный момент.

    Здравствуйте, ребята! На доске написаны уравнения посмотрите на них внимательно. Все ли из этих уравнений вы сможете решить? Какие нет и почему?

    Уравнения, в которых левая и правя часть, являются дробно-рациональными выражениями, называются дробные рациональные уравнения. Как вы думаете, что мы будем изучать сегодня на уроке? Сформулируйте тему урока. Итак, открываем тетради и записываем тему урока «Решение дробных рациональных уравнений».

    2. Актуализация знаний. Фронтальный опрос, устная работа с классом.

    А сейчас мы повторим основной теоретический материл, который понадобиться нам для изучения новой темы. Ответьте, пожалуйста, на следующие вопросы:

    1. Что такое уравнение? (Равенство с переменной или переменными .)

    2. Как называется уравнение №1? (Линейное .) Способ решения линейных уравнений. (Все с неизвестным перенести в левую часть уравнения, все числа - в правую. Привести подобные слагаемые. Найти неизвестный множитель ).

    3. Как называется уравнение №3? (Квадратное. ) Способы решения квадратных уравнений. (Выделение полного квадрата, по формулам, используя теорему Виета и ее следствия .)

    4. Что такое пропорция? (Равенство двух отношений .) Основное свойство пропорции. (Если пропорция верна, то произведение ее крайних членов равно произведению средних членов .)

    5. Какие свойства используются при решении уравнений? (1. Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному. 2. Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному .)

    6. Когда дробь равна нулю? (Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю .)

    3. Объяснение нового материала.

    Решить в тетрадях и на доске уравнение №2.

    Ответ : 10.

    Какое дробно-рациональное уравнение можно попробовать решить, используя основное свойство пропорции? (№5).

    (х-2)(х-4) = (х+2)(х+3)

    х2-4х-2х+8 = х2+3х+2х+6

    х2-6х-х2-5х = 6-8

    Решить в тетрадях и на доске уравнение №4.

    Ответ : 1,5.

    Какое дробно-рациональное уравнение можно попробовать решить, умножая обе части уравнения на знаменатель? (№6).

    D=1›0, х1=3, х2=4.

    Ответ : 3;4.

    Теперь попытайтесь решить уравнение №7 одним из способов.

    (х2-2х-5)х(х-5)=х(х-5)(х+5)

    (х2-2х-5)х(х-5)-х(х-5)(х+5)=0

    х(х-5)(х2-2х-5-(х+5))=0

    х2-2х-5-х-5=0

    х(х-5)(х2-3х-10)=0

    х=0 х-5=0 х2-3х-10=0

    х1=0 х2=5 D=49

    Ответ : 0;5;-2.

    Ответ : 5;-2.

    Объясните, почему так получилось? Почему в одном случае три корня, в другом – два? Какие же числа являются корнями данного дробно-рационального уравнения?

    До сих пор учащиеся с понятием посторонний корень не встречались, им действительно очень трудно понять, почему так получилось. Если в классе никто не может дать четкого объяснения этой ситуации, тогда учитель задает наводящие вопросы.

      Чем отличаются уравнения № 2 и 4 от уравнений № 5,6,7? (В уравнениях № 2 и 4 в знаменателе числа, № 5-7 – выражения с переменной .) Что такое корень уравнения? (Значение переменной, при котором уравнение обращается в верное равенство .) Как выяснить является ли число корнем уравнения? (Сделать проверку .)

    При выполнении проверки некоторые ученики замечают, что приходится делить на нуль. Они делают вывод, что числа 0 и 5 не являются корнями данного уравнения. Возникает вопрос: существует ли способ решения дробных рациональных уравнений, позволяющий исключить данную ошибку? Да, это способ основан на условие равенства дроби нулю.

    х2-3х-10=0 , D=49 , х1=5 , х2=-2.

    Если х=5, то х(х-5)=0, значит 5- посторонний корень.

    Если х=-2, то х(х-5)≠0.

    Ответ : -2.

    Давайте попробуем сформулировать алгоритм решения дробных рациональных уравнений данным способом. Дети сами формулируют алгоритм.

    Алгоритм решения дробных рациональных уравнений:

    1. Перенести все в левую часть.

    2. Привести дроби к общему знаменателю.

    3. Составить систему: дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.

    4. Решить уравнение.

    5. Проверить неравенство, чтобы исключить посторонние корни.

    6. Записать ответ.

    Обсуждение: как оформить решение, если используется основное свойство пропорции и умножение обеих частей уравнения на общий знаменатель. (Дополнить решение: исключить из его корней те, которые обращают в нуль общий знаменатель).

    4. Первичное осмысление нового материала.

    Работа в парах. Учащиеся выбирают способ решения уравнения самостоятельно в зависимости от вида уравнения. Задания из учебника «Алгебра 8»,2007: № 000(б, в,и); № 000(а, д,ж). Учитель контролирует выполнение задания, отвечает на возникшие вопросы, оказывает помощь слабоуспевающим ученикам. Самопроверка: ответы записаны на доске.

    б) 2 – посторонний корень. Ответ:3.

    в) 2 – посторонний корень. Ответ: 1,5.

    а) Ответ: -12,5.

    ж) Ответ: 1;1,5.

    5. Постановка домашнего задания.

    2. Выучить алгоритм решения дробных рациональных уравнений.

    3. Решить в тетрадях № 000(а, г,д); № 000(г, з).

    4. Попробовать решить № 000(а)(по желанию).

    6. Выполнение контролирующего задания по изученной теме.

    Работа выполняется на листочках.

    Пример задания:

    А) Какие из уравнений являются дробными рациональными?

    Б) Дробь равна нулю, когда числитель ______________________ , а знаменатель _______________________ .

    В) Является ли число -3 корнем уравнения №6?

    Г) Решить уравнение №7.

    Критерии оценивания задания:

      «5» ставится, если ученик выполнил правильно более 90% задания. «4» - 75%-89% «3» - 50%-74% «2» ставится учащемуся, выполнившему менее 50% задания. Оценка 2 в журнал не ставится, 3 - по желанию.

    7. Рефлексия.

    На листочках с самостоятельной работой поставьте:

      1 – если на уроке вам было интересно и понятно; 2 – интересно, но не понятно; 3 – не интересно, но понятно; 4 – не интересно, не понятно.

    8. Подведение итогов урока.

    Итак, сегодня на уроке мы с вами познакомились с дробными рациональными уравнениями, научились решать эти уравнения различными способами, проверили свои знания с помощью обучающей самостоятельной работы. Результаты самостоятельной работы вы узнаете на следующем уроке, дома у вас будет возможность закрепить полученные знания.

    Какой метод решения дробных рациональных уравнений, по Вашему мнению, является более легким, доступным, рациональным? Не зависимо от метода решения дробных рациональных уравнений, о чем необходимо не забывать? В чем «коварство» дробных рациональных уравнений?

    Всем спасибо, урок окончен.

    Уравнения с дробями сами по себе не трудны и очень интересны. Рассмотрим виды дробных уравнений и способы их решения.

    Как решать уравнения с дробями – икс в числителе

    В случае, если дано дробное уравнение, где неизвестное находится в числителе, решение не требует дополнительных условий и решается без лишних хлопот. Общий вид такого уравнения – x/a + b = c, где x – неизвестное, a,b и с – обычные числа.

    Найти x: x/5 + 10 = 70.

    Для того чтобы решить уравнение, нужно избавиться от дробей. Умножаем каждый член уравнения на 5: 5x/5 + 5×10 = 70×5. 5x и 5 сокращается, 10 и 70 умножаются на 5 и мы получаем: x + 50 = 350 => x = 350 – 50 = 300.

    Найти x: x/5 + x/10 = 90.

    Данный пример – немного усложненная версия первого. Тут есть два варианта решения.

    • Вариант 1: Избавляемся от дробей, умножая все члены уравнения на больший знаменатель, то есть на 10: 10x/5 + 10x/10 = 90×10 => 2x + x = 900 => 3x = 900 => x=300.
    • Вариант 2: Складываем левую часть уравнения. x/5 + x/10 = 90. Общий знаменатель – 10. 10 делим на 5, умножаем на x, получаем 2x. 10 делим на 10, умножаем на x, получаем x: 2x+x/10 = 90. Отсюда 2x+x = 90×10 = 900 => 3x = 900 => x = 300.


    Нередко встречаются дробные уравнения, в которых иксы находятся по разные стороны знака равно. В таких ситуация необходимо перенести все дроби с иксами в одну сторону, а числа в другую.

    • Найти x: 3x/5 = 130 – 2x/5.
    • Переносим 2x/5 направо с противоположным знаком: 3x/5 + 2x/5 = 130 => 5x/5 = 130.
    • Сокращаем 5x/5 и получаем: x = 130.


    Как решить уравнение с дробями – икс в знаменателе

    Данный вид дробных уравнений требует записи дополнительных условий. Указание этих условий является обязательной и неотъемлемой частью правильного решения. Не приписав их, вы рискуете, так как ответ (даже если он правильный) могут просто не засчитать.

    Общий вид дробных уравнений, где x находится в знаменателе, имеет вид: a/x + b = c, где x – неизвестное, a, b, c – обычные числа. Обратите внимание, что x-ом может быть не любое число. Например x не может равняться нулю, так как делить на 0 нельзя. Именно это и является дополнительным условием, которое мы должны указать. Это называется областью допустимых значений, сокращенно – ОДЗ.

    Найти x: 15/x + 18 = 21.

    Сразу же пишем ОДЗ для x: x ≠ 0. Теперь, когда ОДЗ указана, решаем уравнение по стандартной схеме, избавляясь от дробей. Умножаем все члены уравнения на x. 15x/x+18x = 21x => 15+18x = 21x => 15 = 3x => x = 15/3 = 5.


    Часто встречаются уравнения, где в знаменателе стоит не только x, но и еще какое-нибудь действие с ним, например сложение или вычитание.

    Найти x: 15/(x-3) + 18 = 21.

    Мы уже знаем, что знаменатель не может равняться нулю, а значит x-3 ≠ 0. Переносим -3 в правую часть, меняя при этом знак “-” на ”+” и получаем, что x ≠ 3. ОДЗ указана.

    Решаем уравнение, умножаем все на x-3: 15 + 18×(x – 3) = 21×(x – 3) => 15 + 18x – 54 = 21x – 63.

    Переносим иксы направо, числа налево: 24 = 3x => x = 8.


    Решение дробно-рациональных уравнений

    Справочное пособие

    Рациональные уравнения – это уравнения, в которых и левая, и правая части являются рациональными выражениями.

    (Напомним: рациональными выражениями называют целые и дробные выражения без радикалов, включающие действия сложения, вычитания, умножения или деления - например: 6x; (m – n)2; x/3y и т.п.)

    Дробно-рациональные уравнения, как правило, приводятся к виду:

    Где P (x ) и Q (x ) – многочлены.

    Для решения подобных уравнений умножить обе части уравнения на Q(x), что может привести к появлению посторонних корней. Поэтому, при решении дробно-рациональных уравнений необходима проверка найденных корней.

    Рациональное уравнение называется целым, или алгебраическим, если в нем нет деления на выражение, содержащее переменную.

    Примеры целого рационального уравнения:

    5x – 10 = 3(10 – x)

    3x
    - = 2x – 10
    4

    Если в рациональном уравнении есть деление на выражение, содержащее переменную (x), то уравнение называется дробно-рациональным.

    Пример дробного рационального уравнения:

    15
    x + - = 5x – 17
    x

    Дробные рациональные уравнения обычно решаются следующим образом:

    1) находят общий знаменатель дробей и умножают на него обе части уравнения;

    2) решают получившееся целое уравнение;

    3) исключают из его корней те, которые обращают в ноль общий знаменатель дробей.

    Примеры решения целых и дробных рациональных уравнений.

    Пример 1. Решим целое уравнение

    x – 1 2x 5x
    -- + -- = --.
    2 3 6

    Решение:

    Находим наименьший общий знаменатель. Это 6. Делим 6 на знаменатель и полученный результат умножаем на числитель каждой дроби. Получим уравнение, равносильное данному:

    3(x – 1) + 4x 5х
    ------ = --
    6 6

    Поскольку в левой и правой частях одинаковый знаменатель, его можно опустить. Тогда у нас получится более простое уравнение:

    3(x – 1) + 4x = 5х.

    Решаем его, раскрыв скобки и сведя подобные члены:

    3х – 3 + 4х = 5х

    3х + 4х – 5х = 3

    Пример решен.

    Пример 2. Решим дробное рациональное уравнение

    x – 3 1 x + 5
    -- + - = ---.
    x – 5 x x(x – 5)

    Находим общий знаменатель. Это x(x – 5). Итак:

    х 2 – 3х x – 5 x + 5
    --- + --- = ---
    x(x – 5) x(x – 5) x(x – 5)

    Теперь снова освобождаемся от знаменателя, поскольку он одинаковый для всех выражений. Сводим подобные члены, приравниваем уравнение к нулю и получаем квадратное уравнение:

    х 2 – 3x + x – 5 = x + 5

    х 2 – 3x + x – 5 – x – 5 = 0

    х 2 – 3x – 10 = 0.

    Решив квадратное уравнение, найдем его корни: –2 и 5.

    Проверим, являются ли эти числа корнями исходного уравнения.

    При x = –2 общий знаменатель x(x – 5) не обращается в нуль. Значит, –2 является корнем исходного уравнения.

    При x = 5 общий знаменатель обращается в нуль, и два выражения из трех теряют смысл. Значит, число 5 не является корнем исходного уравнения.

    Ответ: x = –2

    Ещё примеры

    Пример 1.

    x 1 =6, x 2 = - 2,2.

    Ответ:-2,2;6.

    Пример 2.

    § 1 Целое и дробное рациональные уравнение

    В этом уроке разберем такие понятия, как рациональное уравнение, рациональное выражение, целое выражение, дробное выражение. Рассмотрим решение рациональных уравнений.

    Рациональным уравнением называют уравнение, в котором левая и правая части являются рациональными выражениями.

    Рациональные выражения бывают:

    Дробные.

    Целое выражение составлено из чисел, переменных, целых степеней с помощью действий сложения, вычитания, умножения, а также деления на число, отличное от нуля.

    Например:

    В дробных выражениях есть деление на переменную или выражение с переменной. Например:

    Дробное выражение не при всех значениях входящих в него переменных имеет смысл. Например, выражение

    при х = -9 не имеет смысла, так как при х = -9 знаменатель обращается в нуль.

    Значит, рациональное уравнение может быть целым и дробным.

    Целое рациональное уравнение - это рациональное уравнение, в котором левая и правая части - целые выражения.

    Например:

    Дробное рациональное уравнение - это рациональное уравнение, в котором или левая, или правая части - дробные выражения.

    Например:

    § 2 Решение целого рационального уравнения

    Рассмотрим решение целого рационального уравнения.

    Например:

    Умножим обе части уравнения на наименьший общий знаменатель знаменателей входящих в него дробей.

    Для этого:

    1. найдем общий знаменатель для знаменателей 2, 3, 6. Он равен 6;

    2. найдем дополнительный множитель для каждой дроби. Для этого общий знаменатель 6 делим на каждый знаменатель

    дополнительный множитель для дроби

    дополнительный множитель для дроби

    3. умножим числители дробей на соответствующие им дополнительные множители. Таким образом, получим уравнение

    которое равносильно данному уравнению

    Слева раскроем скобки, правую часть перенесем налево, изменив знак слагаемого при переносе на противоположный.

    Приведем подобные члены многочлена и получим

    Видим, что уравнение линейное.

    Решив его, найдем, что х = 0,5.

    § 3 Решение дробного рационального уравнения

    Рассмотрим решение дробного рационального уравнения.

    Например:

    1.Умножим обе части уравнения на наименьший общий знаменатель знаменателей входящих в него рациональных дробей.

    Найдем общий знаменатель для знаменателей х + 7 и х - 1.

    Он равен их произведению (х + 7)(х - 1).

    2.Найдем дополнительный множитель для каждой рациональной дроби.

    Для этого общий знаменатель (х + 7)(х - 1) делим на каждый знаменатель. Дополнительный множитель для дроби

    равен х - 1,

    дополнительный множитель для дроби

    равен х+7.

    3.Умножим числители дробей на соответствующие им дополнительные множители.

    Получим уравнение (2х - 1)(х - 1) = (3х + 4)(х + 7), которое равносильно данному уравнению

    4.Слева и справа умножим двучлен на двучлен и получим следующее уравнение

    5.Правую часть перенесем налево, изменив знак каждого слагаемого при переносе на противоположный:

    6.Приведем подобные члены многочлена:

    7.Можно обе части разделить на -1. Получим квадратное уравнение:

    8.Решив его, найдем корни

    Так как в уравнении

    левая и правая части - дробные выражения, а в дробных выражениях при некоторых значениях переменных знаменатель может обратиться в нуль, то необходимо проверить, не обращается ли в нуль при найденных х1 и х2 общий знаменатель.

    При х = -27 общий знаменатель (х + 7)(х - 1) не обращается в нуль, при х = -1 общий знаменатель также не равен нулю.

    Следовательно, оба корня -27 и -1 являются корнями уравнения.

    При решении дробного рационального уравнения лучше сразу указать область допустимых значений. Исключить те значения, при которых общий знаменатель обращается в нуль.

    Рассмотрим еще один пример решения дробного рационального уравнения.

    Например, решим уравнение

    Знаменатель дроби правой части уравнения разложим на множители

    Получим уравнение

    Найдем общий знаменатель для знаменателей (х - 5), х, х(х - 5).

    Им будет выражение х(х - 5).

    теперь найдем область допустимых значений уравнения

    Для этого общий знаменатель приравняем к нулю х(х - 5) = 0.

    Получим уравнение, решив которое, найдем, что при х = 0 или при х = 5 общий знаменатель обращается в нуль.

    Значит, х = 0 или х = 5 не могут быть корнями нашего уравнения.

    Теперь можно найти дополнительные множители.

    Дополнительным множителем для рациональной дроби

    дополнительным множителем для дроби

    будет (х - 5),

    а дополнительный множитель дроби

    Числители умножим на соответствующие дополнительные множители.

    Получим уравнение х(х - 3) + 1(х - 5) = 1(х + 5).

    Раскроем скобки слева и справа, х2 - 3х + х - 5 = х + 5.

    Перенесем слагаемые справа налево, изменив знак переносимых слагаемых:

    Х2 - 3х + х - 5 - х - 5 = 0

    И после приведения подобных членов получим квадратное уравнение х2 - 3х - 10 = 0. Решив его, найдем корни х1 = -2; х2 = 5.

    Но мы уже выяснили, что при х = 5 общий знаменатель х(х - 5) обращается в нуль. Следовательно, корнем нашего уравнения

    будет х = -2.

    § 4 Краткие итоги урока

    Важно запомнить:

    При решении дробных рациональных уравнений надо поступить следующим образом:

    1.Найти общий знаменатель дробей входящих в уравнение. При этом если знаменатели дробей можно разложить на множители, то разложить их на множители и затем найти общий знаменатель.

    2.Умножить обе части уравнения на общий знаменатель: найти дополнительные множители, умножить числители на дополнительные множители.

    3.Решить получившееся целое уравнение.

    4.Исключить из его корней те, которые обращают в нуль общий знаменатель.

    Список использованной литературы:

    1. Макарычев Ю.Н., Н. Г. Миндюк, Нешков К.И., Суворова С.Б. / Под редакцией Теляковского С.А. Алгебра: учебн. для 8 кл. общеобразоват. учреждений. - М.: Просвещение, 2013.
    2. Мордкович А.Г. Алгебра. 8 кл.: В двух частях. Ч.1: Учеб. для общеобразоват. учреждений. - М.: Мнемозина.
    3. Рурукин А.Н. Поурочные разработки по алгебре: 8 класс.- М.: ВАКО, 2010.
    4. Алгебра 8 класс: поурочные планы по учебнику Ю.Н. Макарычева, Н.Г. Миндюк, К.И. Нешкова, С.Б. Суворовой / Авт.-сост. Т.Л. Афанасьева, Л.А. Тапилина. -Волгоград: Учитель, 2005.